
Observability
Bacalhau supports the three main 'pillars' of observability -

logging, metrics, and tracing. Bacalhau uses the

OpenTelemetry Go SDK for metrics and tracing, which can

be configured using the standard environment variables.

Exporting metrics and traces can be as simple as setting

the OTEL_EXPORTER_OTLP_PROTOCOL and

OTEL_EXPORTER_OTLP_ENDPOINT environment variables.

Custom code is used for logging as the OpenTelemetry Go

SDK currently doesn't support logging.

Logging in Bacalhau outputs in human-friendly format to

stderr at INFO level by default, but this can be changed by

two environment variables:

LOG_LEVEL - Can be one of trace , debug , error ,

warn or fatal to output more or fewer logging

messages as required

LOG_TYPE - Can be one of the following values:

Logging

Bacalhau Docs v.1.4.0

https://github.com/open-telemetry/opentelemetry-go
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/protocol/exporter.md
https://github.com/open-telemetry/opentelemetry-go#project-status
https://github.com/open-telemetry/opentelemetry-go#project-status
https://github.com/open-telemetry/opentelemetry-go#project-status
https://docs.bacalhau.org/

Log statements should include the relevant trace, span and

job ID so it can be tracked back to the work being

performed.

Bacalhau produces a number of different metrics including

those around the libp2p resource manager (rcmgr),

performance of the requester HTTP API and the number of

jobs accepted/completed/received.

Traces are produced for all major pieces of work when

processing a job, although the naming of some spans is still

being worked on. You can find relevant traces covering

working on a job by searching for the jobid attribute.

default - output logs to stderr in a human-friendly

format

json - log messages outputted to stdout in JSON

format

combined - log JSON formatted messages to stdout

and human-friendly format to stderr

Metrics

Tracing

The metrics and traces can easily be forwarded to a variety

of different services as we use OpenTelemetry, such as

Honeycomb or Datadog.

To view the data locally, or simply to not use a SaaS

offering, you can start up Jaeger and Prometheus placing

these three files into a directory then running

docker compose start while running Bacalhau with the

OTEL_EXPORTER_OTLP_PROTOCOL=grpc and

OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:4317

environment variables.

Viewing

version: "2"
services:

 jaeger-all-in-one:
 image: "jaegertracing/all-in-one:1.42"
 restart: "always"
 ports:
 - "16686:16686" # Jaeger UI
 - "14250:14250" # Jaeger gRPC endpoint

 otel-collector:
 image: "otel/opentelemetry-collector:0.70.0"
 restart: "always"
 command: ["--config=/etc/otel-collector-config.y
 volumes:
 - "./otel-collector-config.yaml:/etc/otel-coll
 ports:
 - "8888:8888" # Prometheus metrics exposed b
 - "8889:8889" # Prometheus exporter metrics
 - "13133:13133" # health_check extension
 - "4317:4317" # OTLP gRPC receiver
 depends_on:
 - "jaeger-all-in-one"
 - "prometheus"

 prometheus:
 container_name: "prometheus"
 image: "prom/prometheus:v2.42.0"
 restart: "always"
 volumes:
 - "./prometheus.yaml:/etc/prometheus/prometheu
 ports:
 - "9090:9090" # Prometheus UI

receivers:
 otlp:
 protocols:
 grpc:

exporters:
 prometheus:
 endpoint: "0.0.0.0:8889"

 jaeger:
 endpoint: jaeger-all-in-one:14250
 tls:
 insecure: true

processors:
 batch:

extensions:
 health_check:

service:
 extensions: [health_check]
 pipelines:
 traces:
 receivers: [otlp]
 processors: [batch]
 exporters: [jaeger]
 metrics:
 receivers: [otlp]
 processors: [batch]
 exporters: [prometheus]

Previous

Configuring Transport Level Security

Next

Limits and Timeouts

scrape_configs:
 - job_name: 'otel-collector'
 scrape_interval: 10s
 static_configs:
 - targets: ['otel-collector:8889']
 - targets: ['otel-collector:8888']

https://docs.bacalhau.org/setting-up/running-node/configuring-tls
https://docs.bacalhau.org/setting-up/running-node/resource-limits

